Biography
Sander is a postdoctoral researcher in the SALT group coming from the National Institute of Chemical Physics and Biophysics in Tallinn, Estonia. He received his BSc, MSc and PhD from the University of Tartu in Estonia in 2015, 2017 and 2021, respectively, with a focus on electrocatalysis and the development of non-precious metal catalysts for low-temperature fuel cells. Since 2019 he has worked on the molten electrolytic splitting of CO2 in carbonate-containing melts. From 2021 to 2023 he was a postdoctoral researcher in the European Space Agency working on the project “Electrochemical splitting of CO2 for carbon and oxygen production in Mars conditions”.
Links
Recent Awards
• 2015, Sander Ratso, Estonian National Contest for University Students, Estonian Research Council, 1st prize for the work “Electrochemical reduction of oxygen on nitrogen-doped carbon nanomaterials” (highest prize for BSc theses at the national level)
• 2017, Sander Ratso, Estonian National Contest for University Students, Estonian Research Council, 1st prize for the work “Electrochemical reduction of oxygen on Co, Fe-containing nitrogen doped multiwalled carbon nanotubes” (highest prize for MSc theses at the national level)
• 2017 Erasmus+ traineeship programme
• 2018 Dora+ scholarship for PhD student mobility
• 2019 Dora+ scholarship for short study visits
• 2019 Prize for the best poster at the conference “Electrolysis and Fuel Cell Discussions – Towards Catalysts Free of Critical Raw Materials for Fuel Cells and Electrolysers”
• 2019, Sander Ratso, First Prize, The Dr. Bernard S. Baker Student Award for Fuel Cell Research
• 2021, Sander Ratso, Estonian National Contest for University Students, Estonian Research Council, national main prize for the work ” Electrocatalysis of oxygen reduction on non-precious metal catalysts” (highest national award given for PhD theses over all scientific fields)
• 2021, Sander Ratso, Materials 2021 Best Ph.D. Thesis Award
• 2022, MSCA Postdoctoral Fellowships 2022 Seal of Excellence
Publications
[1] E. Najafli, S. Ratso, Y.P. Ivanov, M. Gatalo, L. Pavko, C.R. Yörük, P. Walke, G. Divitini, N. Hodnik, I. Kruusenberg, Sustainable CO2-Derived Nanoscale Carbon Support to a Platinum Catalyst for Oxygen Reduction Reaction, ACS Appl. Nano Mater. 6 (2023) 5772–5780. https://doi.org/10.1021/acsanm.3c00208.
[2] G. Lacarbonara, S. Chini, S. Ratso, I. Kruusenberg, C. Arbizzani, A MnOx-graphitic carbon composite from CO2 for sustainable Li-ion battery anodes, Mater. Adv. 3 (2022) 7087–7097. https://doi.org/10.1039/d2ma00583b.
[3] A.L. Remmel, S. Ratso, G. Divitini, M. Danilson, V. Mikli, M. Uibu, J. Aruväli, I. Kruusenberg, Nickel and Nitrogen-Doped Bifunctional ORR and HER Electrocatalysts Derived from CO2, ACS Sustain. Chem. Eng. 10 (2022) 134–145. https://doi.org/10.1021/acssuschemeng.1c05250.
[4] S. Ratso, A. Zitolo, M. Käärik, M. Merisalu, A. Kikas, V. Kisand, M. Rähn, P. Paiste, J. Leis, V. Sammelselg, S. Holdcroft, F. Jaouen, K. Tammeveski, Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons, Renew. Energy 167 (2021) 800–810. https://doi.org/10.1016/j.renene.2020.11.154.
[5] S. Ratso, P.R. Walke, V. Mikli, J. Ločs, K. Šmits, V. Vītola, A. Šutka, I. Kruusenberg, CO2 turned into a nitrogen doped carbon catalyst for fuel cells and metal-air battery applications, Green Chem. 23 (2021) 4435–4445. https://doi.org/10.1039/d1gc00659b.
[6] R. Sibul, E. Kibena‐Põldsepp, S. Ratso, M. Kook, M.T. Sougrati, M. Käärik, M. Merisalu, J. Aruväli, P. Paiste, A. Treshchalov, J. Leis, V. Kisand, V. Sammelselg, S. Holdcroft, F. Jaouen, K. Tammeveski, Iron‐ and Nitrogen‐Doped Graphene‐Based Catalysts for Fuel Cell Applications, ChemElectroChem 7 (2020) 1739–1747. https://doi.org/10.1002/celc.202000011.
[7] S. Ratso, M.T. Sougrati, M. Käärik, M. Merisalu, M. Rähn, V. Kisand, A. Kikas, P. Paiste, J. Leis, V. Sammelselg, F. Jaouen, K. Tammeveski, Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-doped Carbide-Derived Carbon Catalysts in Acid Media, ACS Appl. Energy Mater. 2 (2019) 7952–7962. https://doi.org/10.1021/acsaem.9b01430.
[8] S. Ratso, M. Käärik, M. Kook, P. Paiste, J. Aruväli, S. Vlassov, V. Kisand, J. Leis, A.M.A.M. Kannan, K. Tammeveski, High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media, Int. J. Hydrog. Energy 44 (2019) 12636–12648. https://doi.org/10.1016/j.ijhydene.2018.11.080.
[9] S. Ratso, N. Ranjbar Sahraie, M.T. Sougrati, M. Käärik, M. Kook, R. Saar, P. Paiste, Q. Jia, J. Leis, S. Mukerjee, F. Jaouen, K. Tammeveski, Synthesis of highly-active Fe-N-C catalysts for PEMFC with carbide-derived carbons, J. Mater. Chem. A 6 (2018) 14663–14674. https://doi.org/10.1039/c8ta02325e.
[10] S. Ratso, M. Käärik, M. Kook, P. Paiste, V. Kisand, S. Vlassov, J. Leis, K. Tammeveski, Iron and Nitrogen Co-doped Carbide-Derived Carbon and Carbon Nanotube Composite Catalysts for Oxygen Reduction Reaction, ChemElectroChem 5 (2018) 1827–1836. https://doi.org/10.1002/celc.201800132.
[11] S. Ratso, I. Kruusenberg, M. Käärik, M. Kook, L. Puust, R. Saar, J. Leis, K. Tammeveski, Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells, J. Power Sources 375 (2018) 233–243. https://doi.org/10.1016/j.jpowsour.2017.08.046.
[12] R. Sibul, E. Kibena-Põldsepp, S. Ratso, M. Kook, M. Käärik, M. Merisalu, P. Paiste, J. Leis, V. Sammelselg, K. Tammeveski, Nitrogen-doped carbon-based electrocatalysts synthesised by ball-milling, Electrochem. Commun. 93 (2018) 39–43. https://doi.org/10.1016/j.elecom.2018.05.027.
[13] S. Ratso, I. Kruusenberg, M. Käärik, M. Kook, R. Saar, M. Pärs, J. Leis, K. Tammeveski, Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media, Carbon 113 (2017) 159–169. https://doi.org/10.1016/j.carbon.2016.11.037.
[14] S. Ratso, I. Kruusenberg, M. Käärik, M. Kook, R. Saar, P. Kanninen, T. Kallio, J. Leis, K. Tammeveski, Transition metal-nitrogen co-doped carbide-derived carbon catalysts for oxygen reduction reaction in alkaline direct methanol fuel cell, Appl. Catal. B Environ. 219 (2017) 276–286. https://doi.org/10.1016/j.apcatb.2017.07.036.
[15] S. Ratso, I. Kruusenberg, A. Sarapuu, M. Kook, P. Rauwel, R. Saar, J. Aruväli, K. Tammeveski, Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon nanotubes in acid media, Electrochimica Acta 218 (2016) 303–310. https://doi.org/10.1016/j.electacta.2016.09.119.
[16] S. Ratso, I. Kruusenberg, A. Sarapuu, P. Rauwel, R. Saar, U. Joost, J. Aruväli, P. Kanninen, T. Kallio, K. Tammeveski, Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application, J. Power Sources 332 (2016) 129–138. https://doi.org/10.1016/j.jpowsour.2016.09.069.
[17] S. Ratso, I. Kruusenberg, U. Joost, R. Saar, K. Tammeveski, Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media, Int. J. Hydrog. Energy 41 (2016) 22510–22519. https://doi.org/10.1016/j.ijhydene.2016.02.021.
[18] I. Kruusenberg, D. Ramani, S. Ratso, U. Joost, R. Saar, P. Rauwel, A.M. Kannan, K. Tammeveski, Cobalt–Nitrogen Co-doped Carbon Nanotube Cathode Catalyst for Alkaline Membrane Fuel Cells, ChemElectroChem 3 (2016) 1455–1465. https://doi.org/10.1002/celc.201600241.
[19] I. Kruusenberg, S. Ratso, M. Vikkisk, P. Kanninen, T. Kallio, A.M. Kannan, K. Tammeveski, Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell, J. Power Sources 281 (2015) 94–102. https://doi.org/10.1016/j.jpowsour.2015.01.167.
[20] M. Vikkisk, I. Kruusenberg, S. Ratso, U. Joost, E. Shulga, I. Kink, P. Rauwel, K. Tammeveski, E. Shulg, I. Kink, P. Rauwel, K. Tammeveski, Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media, RSC Adv 5 (2015) 59495–59505. https://doi.org/10.1039/C5RA08818F.
[21] S. Ratso, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media, Carbon 73 (2014) 361–370. https://doi.org/10.1016/j.carbon.2014.02.076.
Conference Presentations
- Ratso et al. (2014), Oxygen electroreduction on Fe, Co-containing and nitrogen-doped carbon nanomaterials, Electrocatalysis and Fuel Cell Discussions, La Grande-Motte, France
- Ratso et al. (2018), Transition Metal and Nitrogen Co-Doped Carbide-Derived Carbon Catalysts for Oxygen Reduction Reaction in Alkaline Direct Methanol Fuel Cell, 233rd ECS Meeting, Seattle, WA, USA
- Ratso et al. (2018), Highly active Fe-N-C catalysts for PEMFC from carbide-derived carbons, 69th ISE annual meeting, Bologna, Italy
- Ratso et al. (2019), Iron and Nitrogen Doped Carbide Derived Carbon and Composite Catalysts for Fuel Cell Cathodes, 236th ECS Meeting, Atlanta, GA, USA
- Ratso et al. (2019), Fe-N-C catalysts prepared from carbide derived carbons for PEMFC cathodes (Best poster award winner), Electrocatalysis and Fuel Cell Discussions, La Grande-Motte, France
- Ratso et al. (2019), Highly active Fe-N-C catalysts for PEMFC from carbide-derived carbons (Invited, Baker award first place winner), Hydrogen & Fuel Cell Seminar, Long Beach, CA, USA
- Ratso et al. (2022), CO2 turned into a nitrogen doped carbon catalyst for the fuel cell and metal-air battery applications, 241st ECS Meeting, Vancouver, BC, Canada
- Ratso et al. (2022), CO2turned into a bifunctional Ni and/or N doped carbon catalysts for the HER/ORR, ACS Fall 2022, Chicago, USA
- Ratso et al. (2022), Lignin-based N-doped carbon nanomaterials for the ORR, ACS Fall 2022, Chicago, USA